
Smalltalk Programming
Lesson 3

For today’s lesson, you will learn how to create a graphic button that uses
an expression from your previous lesson. This button will be used to
evaluate your expression, which will then move your EllipseMorph.

1. We will use an expression from Lesson 2 that moves your EllipseMorph
to the right. You will assign that expression to a variable. Will your new
variable run your expression? In your existing Workspace window, type
the following code and then “do it” for each line:

moveRight := b x: b x + 10.
moveRight.

2. What happened when you evaluated the moveRight variable (the
second line)? Did you notice anything? Try evaluating the first line again.
If you did not notice anything, try evaluating the expression a few more
times. What do you notice?

3. The expression in the first line of Step 1 will move your EllipseMorph to
the right and then assign your EllipseMorph object (the variable b) to the
moveRight variable. This is not exactly what we are looking for. We are
wanting a variable that can run when evaluated.

4. Let’s try something different. Change the expression that you typed in
Step 1 to look like the line below and then “do it”:

moveRight := [b x: b x + 10].

5. Did you notice anything this time? If not, that is okay. You should not
have noticed anything just yet.

1

6. What is different in the expression in Step 4 from the first line you typed
in Step 1?

7. You added [and]. In Smalltalk these create a Block. These []’s will make
a difference, but there is one more thing needed in order for this to work.

8. In Smalltalk the []’s create a Block. Using a Block lets you delay
evaluating its expression(s) until you want to. There is a lot of power with
these and you will find them in a lot of Smalltalk code.

9. To have your Block evaluate its expression, you send to it the value
message. In your existing Workspace window, type the following code and
then “do it”:

moveRight value.

10. What do you notice this time? Your EllipseMorph moved! Every time
you send value to a Block, you cause it to evaluate the expression(s) inside.

11. Note that you do not need to assign a Block to a variable to evaluate its
expression. You can also run the following line and get the same result.
However, for our lesson, we want to use a variable that can act as a
reusable code expression.

[b x: b x + 10] value.

2

12. You can use the variable name of your Block to create a simple button
that can be used to evaluate its expression. Type the following code in
your Workspace, highlight all the lines, and then “do it”:

s := SimpleButtonMorph new.
s label: 'Move right'.
s target: moveRight.
s actionSelector: #value.
s openInWorld.

13. You should see a small rectangle button in the upper left corner of your
screen. Because a message was not sent to the button, letting it know
where to go, that is its default opening location. Click on the button. What
do you see?

14. Can you figure out what the code in Step 11 is doing by looking at it?

15. The special word #value that you sent is a special way to send value to
your Block but it works just like Step 9. This special way will prevent value
from being used where it should not be.

16. Save and Quit your Smalltalk image.

3

	Smalltalk Programming
	Lesson 3

