Smalltalk Programming
Lesson 18

In the last lesson you made code changes to give an enemy the ability to
move and use the Morphic animation system. You also made code changes
to prevent the enemy from moving off the game screen. However, you
were left with a problem to consider — how to move the enemy left instead
of right?

Every time the method move executes it will not know which direction
your enemy is moving or wants to move — your move method will only
have the ability to find out where the enemy is on the game screen. You
need something that remembers information before and after the move
method executes. With this something, your method can then know which
direction it needs to move the enemy towards.

This situation is where an instance variable will be useful. If you
remember, you declared the instance variable ship in your ShooterGame
class. The ship instance variable allows easy access to the Ship instance.
For this situation, you will use an instance variable to remember the
direction of your enemy. Because your method needs to know the direction
that the enemy is going, the name direction for your instance variable will
work very nicely.

1. Add the direction instance variable in the Enemy class. Make the
following change below and save it.

RectangleMorph subclass: #Enemy
instanceVariableNames: 'direction'
classVariableNames: "
poolDictionaries: "
category: 'ShooterGame'

2. All Enemy instances now have the direction instance variable. This
instance variable can be used to remember which direction the enemy is
heading.

3. Now that the direction instance variable provides the ability to
remember which direction an enemy instance is moving, you will need to
give it a starting value. This starting value will let the enemy instance
know which direction it should start with.

4. In order to start a new enemy instance in a direction, the
Enemy>>initialize method would be a great place to set the starting
direction. Make the following changes to Enemy>>initialize and then
save the changes.

initialize

super initialize.

self color: Color green.

self borderColor: Color honeydew.
self extent: 32 @ 32.

direction := 10

5. The value for direction will now be used to let the enemy know to move
right when it starts.

6. Now that an enemy instance can know whether it is moving right or left,
you can make the code changes to Enemy>>move so it can move the enemy
right or left.

move

self x: self x + direction.
(self right > owner right)
ifTrue: [direction := -10].
(self left < owner left)
ifTrue: [direction := 10].
owner changed

7. Look at each line of code. Can you figure out what each line of code is
doing? How is the newly declared direction instance variable being used in
this method?

8. Because your currently running enemy instance was created before the
direction instance variable was declared, your enemy does not have an
assigned direction value. Its value will be nil. The value nil means
“nothing.” Your enemy cannot use “nothing” for a direction. So, you have a
few options if you want to send the move method to your running enemy.
Choose and follow one of the options below:

1. You can delete your current enemy and create a new enemy. The
new enemy will initialize with a direction value and can begin to
move using that value. But what is the fun in this? Why not see how
long you can keep your game running while building it? If you
choose this option you will want to:

1. Delete your current enemy. In an explore morph window run the
“self delete.” expression on your current enemy. Remember to
select the enemy first.

2. Create a new enemy. This step is like steps 6 and 7 in Lesson 16. In
an explore morph window, select ShooterGame and then run
“self initializeEnemies.”. Remember to select ShooterGame first.

2. You can use the explore morph window to set the direction value on
your currently running enemy. In an explore morph window, select
the enemy and then run “do it” on “direction := 10.”. Remember to
select the enemy first.

3. You can use the debugger on your enemy. If you would like to see
how this can be done, go to the Advanced Solution below. What you
learn there will help you understand the debugger better, which is a
powerful tool worth getting to know.

9. In an explore morph window, run “self move.” on enemy instance.
Remember to select the enemy first.

10. Test your code changes by running the expression “self move.” on your
enemy object in an explore morph window.

11. What do you notice about your enemy with your new code?

12. You might have noticed that your enemy will go out of bounds just a
little bit. You can fix this by making the following changes to
Enemy>>move.

move

self x: self x + direction.
(self right > owner right)
ifTrue: [direction := -10.
self x: self x + direction].
(self left < owner left)
ifTrue: [direction := 10.
self x: self x + direction].
owner changed

13. Go ahead and enable stepping for your enemy morph. In an explore
morph window run the “self startStepping.” expression on your current
enemy. Remember to select the enemy first.

14. What else needs to be done for your shooter game?

15. Save and Quit your Smalltalk image.

Advanced Solution

Congratulations on selecting the advanced solution! Your effort here will
help you to understand and use the Smalltalk debugger even better.

1. In an explore morph window, run “self move.” on your enemy instance.
Remember to select the enemy first.

2. A predebugger window like the one in Figure 1 below will be displayed.
The error message says that there 1is an undefined object
(UndefinedObject). Press the “Debug” button to proceed to the debugger
(or press any key).

() MessageNotUnderstood: UndefinedObject>>adaptToNO O
| Proceed ” Abandon ” Debug ” Create |

i UndefinedObject{Object) >>doesNotUnderstand: #adaptToNumber:
+ UndefinedObject{Object)>=adaptToFloat:andSend:
i+ SmallFloatéd ==+
Enemy==>move
Enemy==Dolt
Compiler==evaluateCue;ifFail;
Compiler==evaluateCue;ifFail;logged:
Compiler==evaluate:in;to;environment: notifying:ifFail;logged:
[1in SmalltalkEditor{TextEditor)==evaluateSelectionAndDo:

L -

Figure 1: UndefinedObject error

3. The debugger will now be displayed. The last 3 lines in the execution
stack show that a numeric operation was attempted on an object that is
undefined. Selecting any of the lines will show, in the middle pane, the
Smalltalk code being executed in that method, with the part that triggered
the error highlighted. Select “Enemy>>move” in the stack to see where in
your method the error was triggered.

4. The debugger window will look like the one below in Figure 2. The error
was triggered in Enemy>>move with “+ direction.” Because you recently
made a change with the direction instance variable, it would be a good
thing to look at first.

) MessageNotUnderstood: UndefinedObject>>adaptToNumber:andSend: { &

& UndefinedObject{Object)>>doesNotUnderstand: #adaptToNumber:andSend:
4+ UndefinedObject{Object)>>adaptToFloat:andSend:
4+ SmallFloated ==+

Enemy=>move

Enemy=>=Dolt

Compiler==evaluateCue:ifFail:

Compiler==evaluateCue:ifFail:logged:

Proceed ” Restart ” Into ” Ower || Through || Full Stack || Where || Tally It

move

self x: self x + direction.
{self right > owner right)
ifTrue: [direction := -10].
(self left = owner left)
ifTrue: [direction := 10].
owner changed

all inst vars stack top
extent all temp vars
screenshot
bounds
owner
submarnhs

self L thisContext

Figure 2: Enemy>>move error occurrence

5. The 4 panes below the middle pane allow you to inspect various aspects
of the objects in the middle method pane.
1. The 2 bottom left panes work like the explore morph window does
on a selected object. The object selected here is an instance of Enemy.
The left pane shows instance variables for the Enemy instance. The
right pane works like the explore morph workspace pane.
2. The 2 bottom right panes work similar to the 2 bottom left panes,
except here, the left pane shows temporary variables. The right pane
here also works like the explore morph workspace pane.

6. All of these panes can be used to run, inspect, and change values to see
how your code works. Remember, method code in the middle pane can be
changed, but be careful not to change methods that are not yours
(Smalltalk methods for example). Otherwise you could crash or break
something with your Squeak image without the ability to fix it.

7. Select the direction instance variable in the bottom left pane, like Figure
3 below. The pane on the right shows its value. This is the problem. Our

method is attempting to add nil as the value of direction, but nil cannot be
used like a number.

fullBounds
color
extension
borderWidth
borderColor
direction
#borderStyle

Figure 3: direction instance variable
with the value of nil

nil

8. Replace nil with the value “10” and save the value by choosing “accept”
or pressing Ctrl-s.

fullBounds
color
extension
borderWidth
borderColor
direction
#borderStyle

Figure 4: direction instance variable
with the value of 10

10

9. In the debugger press the “Restart” button. This will restart the use of
the selected method. In this case it is Enemy>>move.

10. Now press the “Proceed” button. This will remove the debugger
window, execute Enemy>>move, and move your enemy.

11. Congratulations for taking the advanced solution!

	Smalltalk Programming
	Lesson 18
	Advanced Solution

