
Smalltalk Programming
Lesson 15

In the last lesson you coded the ability for your ship to shoot. After testing
your code changes, you noticed that even though the shot displays, it does
not move. A shot from your ship will not be much good if it does not move
towards a target! Today, you will make the necessary code changes in
order for your shot to move.

1. Type the method below in your Shot class, which is used to move your
Shot instances.

move

 self position: (self position) - (0@5).
 self top < owner top ifTrue: [self delete]

2. Look at each line of code. Can you figure out what each line of code is
doing?

3. Now that your code has been added, did your Shot instance(s) move?

4. Your Shot instance(s) did not move yet because the Morphic animation
system has not been enabled for your Shot morph.

5. Morphic provides the ability to animate Morphs. This animation is
handled by using step and stepTime on Morph instances.

1. The step method works kind of like having a heartbeat. Just as a
heartbeat means you are alive and keeps you moving, when the step
method is declared, Morphic will animate the Morph using the code
within the method. It will run this code at regular intervals.

2. The stepTime method works kind of like how fast a heart is beating.
This sets the interval for your step method. The smaller the number
is, the faster your step interval will be. The larger the number is, the

slower your step interval will be. This number says how much time
you want to wait before the step method runs again.

6. Before you make your Morphic animation code changes, now would be
a good time to explore and interact with your Morphs. This exploration
will help you to better understand how stepping works with Morphs.

7. Open an object explorer on your shooter game. To do this, press the
middle mouse button while the mouse cursor is over your game screen.
The Morphic halo will display. Select the wrench icon on the right side and
then select “explore morph”.

8. Select and expand “submorphs”. Then select and expand a Shot
instance. Your explorer window should look similar to Figure 1 below.

Figure 1: Object explorer on a Shot instance

9. Type the following expressions in your explorer workspace window,
then select “print it” (or Ctrl-p) for each line. What is the result for each
expression?

self wantsSteps.
self isStepping.

10. The results for your expressions were “false”. This shows that Morphic
animation has not been enabled for your Shot instance(s). Keep your
explorer window open for now.

11. Type the code below in your Shot class and then save the changes.

step

 self move

12. Did your Shot instance start moving?

13. Select “print it” (or Ctrl-p) for each of your 2 stepping expressions
again. What are the results?

14. You will see that your Shot instance wants to be included in the
Morphic animation system. However, the last expression shows that
stepping is not yet enabled for your Shot instance.

15. Your Shot instance(s) are not moving because they were created
before the Morphic animation system was enabled with the step method.
Morphic instances created before creating the step method will default to
not step until they are told to do so.

16. Enable stepping for the Shot instance that you have selected by
selecting “do it” on the expression below.

self startStepping.

17. Your shot is now moving. If you have more shots displayed, you can
move all of them by typing the following code in your object explorer
workspace or in a Workspace window.

Shot allInstances do: [:shot | shot startStepping].

18. Now that the step method exists in your Shot class, all new shots will
be included in the Morphic animation system. You will not need to do
anything special to make this happen. The reason you needed to do
something special this time is because these instances were created before
the step method was added.

19. You might notice that your shots are not moving as fast as you might
like them to. Type the following code to change that.

stepTime

 ^ 33

20. The default stepTime value is 1000. The larger the stepTime number
is, the more time that will go by before the next step.

21. Test your new code. What do you notice? What else needs to be done?

22. Save and Quit your Smalltalk image.

	Smalltalk Programming
	Lesson 15

