Smalltalk Programming
Lesson 12

In your last lesson you added code to handle keyboard events that could
be received and used for the movement of your ship. Today you will code
the movement of your ship.

1. In this lesson you will learn another way to enter your code. In most
programming languages, when an error occurs within a program the
program will abruptly end with an error. In Smalltalk, the program does
not end when an error occurs. Smalltalk will popup a debugger window
that displays when an error happens. Instead of only showing you the
error, the debugger also provides a place where you can fix the error as
well. Once you have made the change(s) to fix the error, your program can
continue running as if nothing happened! Some programmers like to use
the debugger a lot when coding. Today you will be using the debugger to
enter your code.

2. Look at the code in Ship>>keystroke: (that is, the keystroke:
method in the Ship class) that you entered in the last lesson. Notice that
the methods movelLeft, moveRight, moveUp, and moveDown have not
actually been created yet.

3. Move your mouse cursor over your game window. Press the up arrow
key only once. The predebugging window will popup as seen in Figure 1
below.

rﬂ MessageNotUnderstood: Ship>>moveUp (v N 4]
| Proceed ” Abandon ” Debug ” Create |

i Ship{Object)==>doesNotUnderstand: #movelp
Ship==keystroke:

i+ ShooterGame==>handlekeystroke:

i+ KeyboardEvent>=>sentTo;

+ ShooterGame({Morph)==>handleEvent:
ShooterGame(Morph)==handleFocusEvent:
MorphicEventDispatcher=>doHandlingForFocusEvent:with:
MorphicEventDispatcher==>dispatchFocusEvent:with:

+ ShooterGame({Morph)==>processFocusEvent:using:

L -

Figure 1: Predebugger window

4. Read the error message at the top of your predebugger window. What
does it say? What might it mean?

5. The Smalltalk predebugger says that it does not know what moveUp in
your Ship class is. This is because you have not yet added the code for the
moveUp method. Your predebugger window gives you the option to create
the method.

6. Select the “Create” button to use the debugger window. You will be
asked to confirm where you want this new method to go. Select “Ship” and
then press “Choose.”

7. You will also be asked to select a category for your method. Type the
letters “un”, select “as yet unclassified”, and then press “Choose or Add.”
Confirm by pressing the “as yet unclassified” button. The method category
does not affect anything with your code. These are also called “Protocols.”
Protocols are used for convenient groupings of your methods which help
to describe what your method does. You do not need to consider them
right now.

8. You will now see the debugging window like the one below in Figure 2.

£} MessageNotUnderstood: Ship>>moveUp (v 4+
o Ship==>maoveUp L

Ship=>=>keystroke:

#+ ShooterGame>=>handleKeystroke:

#+ KeyboardEvent>=sentTo:

+ ShooterGame(Morph)==handleEvent:
ShooterGame{Morph)>>handleFocusEvent:
MorphicEventDispatcher>>doHandlingForFocusEvent:with:
MorphicEventDispatcher==>dispatchFocusEvent:with:

Proceed ” Restart ” Into || Ower ” Through ” Full Stack ” Where ” Tally It

movelUp
self shouldBelmplemented

self thisContext
all inst vars all temp vars
extent
screenshot
bounds
owner
submorphs
fullBounds

Figure 2: Debugger window

9. We will not discuss everything that can be done in the debugging
window in this lesson. However, with this window you can explore, test,
and code. This is a very powerful tool that allows you to accomplish much.
It is not just a tool for when something wrong happens.

10. For now, you will only need to learn how to enter new code within the
debugger. Entering your code will be very similar to adding code in the
System Browser.

11. Type and save the following code in your debugger window. You will
notice that the debugger has already added the method name for you.

moveUp

selfy: selfy + 5.
owner changed

12. After you have saved your code changes, press the “Proceed” button.
This tells the debugger to continue running your program — as if an error
did not even happen! Try to watch your ship when you do this.

13. You might not have noticed it, but your ship moved up once! Not only
did your program not crash on you, it still handled the up arrow key being
pressed, allowed you to correct an error, and then continue running as if
no problem happened.

14. Press your up arrow key a few times to see your code change at work.
Do not try the other arrow keys just yet. You will do those next.

15. Now follow the same process to use the debugger to create the other 3
ship movement methods. Remember to only press the arrow key once. If
you press your arrow key more than once the predebugger will open the
debugger window and you will then not have a “Create” button to use.

moveDown

self y: self y - 5.
owner changed

moveLeft

self x: self x - 5.
owner changed

moveRight

self x: self x + 5.
owner changed

16. Try out your code changes.

17. What do you notice about the ship and your shooter game? What else
needs to be done?

18. Save and Quit your Smalltalk image.

	Smalltalk Programming
	Lesson 12

